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STATISTICAL PREDICTION OF LAMINAR-TURBULENT TRANSITION

ROBERT RUBINSTEIN" AND MEELAN CIIOUDHARI _

Abstract. Stochastic versions of stability equations are considered as a means to develop integrated

models of transition and turbulence. Two types of stochastic models are considered: probability density

function evolution equations for stability mode amplitudes, and Langevin models t)ased on representative

stability theories including the resonant triad model and the parabolized stability equations. The first type

of model can describe the effect of initial phase differences among disturbance modes on transition location.

The second type of model describes tile growth of random disturbances as transition proceeds and provides

a natural framework in which to couple transition and turbulence models. Coupling of parabolized stability

equations with either subgrid stress models or with conventional turbulence models is also discussed as an

alternative route to achieve the goal of integrated turbulence and transition modeling.

Key words, turbulence, transition, parabolized stability equations, resonant triads

Subject classification. Fluid Mechanics

1. Introduction. Recent developments in computational fluid dynamics flows have revealed the need

for integrated modeling of turlmlence and transition. In many external aerodynamic flows, such as the flow

past high-lift airfoil configurations, low-pressure turbine blades, and the Mars flyer design proposed by NASA

(C. L. Streett, private communication), accurate prediction of crucial bulk parameters like the lift an(l drag

coefficients requires that flow computation be transition sensitized. In high-lift applications in particular, the

laminar and turbulent regions are tightly coupled through the det)endence of separation and reattachment

characteristics on transition location; the predicted flow can vary from fiflly attached to massively separated

depending on the transition location imposed on the flow solver [25]. Recent comt)utations [38] have shown

that whereas most turbulence models can predict many external flows with adequate accuracy provided a

transition location is specified in advance, no single turbulence model can predict this location in all cases.

A basic obstacle to the integration of turbulence and transition modeling lies in the quite distinct

viewpoints of previous research in these fields. Transition studies typically formulate deterministic equations

like the Orr-Sommerfeld equation in a wide variety of different problems, whereas turbulence studies apply

statistical methods to describe the features common to all turbulent flows. This distinction is best. illustrated

by comparing the simplest turbulence model, the mixing-length model [49] and the simplest transition

prediction scheme, the e N method [5], [41]. The e N method is a deterministic t)rocedure based on the linear

amplification of the most unstable mode, whereas the mixing-length model appeals to a statistical mechanics

analogy to describe the effects of turbulence on the mean flow.

Although these divergent viewt)oints arise from the need to describe radically different flow physics,

recent developments have tended to bring these fields closer together; thus, recent investigations of bypass

transition [33] analyze random initial disturbances, implicitly posing the transition problem statistically. In

any case, a synthesis of turtmlence and transition modeling is demanded by the need for accurate, seamless

computation of transitional flows throughout the entire transition process, from the initial disturbances to
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fully developed turbulence.

One approach to integrated modeling of turbulence and transition is to apply low Reynolds numt)er

turbulence models directly to transitional flows [1], [7], [11]; this approach treats transition as a special

kind of 'non-equilibrium' turbulence. Another general approach is to sensitize existing turbulence models

to transition, often by introducing a new field quantity like intermittency [45], [26], [40]. An entirely new

approach which treats transition beginning from turl)ulence modeling is given in [46]. Certainly, models of

this type will play a valuable role ill the aerodynanlic design process. However, due to ttle limited transition

physics einl)edded in such models, typically through curve fits and/or ad hoc calibration against a relatively

sparse measurement database, they are not likely to explain potential anamolies in measured aerodynamic

performance or yield reliable answers when extrapolation to completely new flow situations (e.g., the Mars

flyer application) is required.

In broad terms, the present work is motivated by the desire to retain as much of the transition physics

revealed t)y recent advances in understanding of the transition t)roeess reviewed, for example by [16], [22],

[14], and [27], yet allow for integrated aerodynmnic predictions in a realistic setting. To that end, the current

investigation begins with transition and has the ultimate goal of incorporating turbulence prediction in a

seandess fashion. Given this overall goal, two main areas present themselves as candidates for further work.

The first of these areas concerns the prediction of transition in isolation from the turbulent flow computation,

whereas the second area of need is related to the mechanics of coupling tile transition prediction with the

computation of the turbulent flowfield.

First, let us consider the t)rediction of transition itself. As noted by Reshotko [34], laminar-turbulent

transition in a convectively unstable I)oundary layer correst)onds to the forced response of a rather comt)lex

oscillator, namely tile laminar basic state. Under the relatively benign disturbance environments that are

typical of external aerodynamic flight, the above response may be decomposed into three broad stages:

excitation of linearly unstable eigenmodes of the oscillator due to forcing from the external disturbances (i.e.,

the process of receptivity), initially ext)onential growth of these eigenmodes as they propagate downstrcmn,

and tile variety of nonlinear interactions which ensue after the eigenmodes have achieved sufficiently large

amplitudes and which eventually lead to turbulence. Any attempt to model the transition process on a

rational basis must account for all three stages of the 'oscillator' response.

The current engineering methods for transition prediction typically involve the linear propagation phase

alone, with little or no account of receptivity (which initiates transition) or the nonlinear interactions (which

actually cause the onset of transition). Ill spite of their success in predicting transition in a wide range of

flows, these N-factor methods lack the physical basis necessary to explain the effects of surface roughness

and free-stream unsteadiness, which may be particularly significant in flows such as swept wing boundary

layers and high-lift flows. Thus, a.s an essential aspect of integrated modeling of transition and turbulence,

it is necessary to develop rational prediction methods that couple the various stages of transition itself.

A preliminary attempt along these lines, which focused on a controlled disturbance environment involving

sinusoidal surface waviness and a monochromatic acoustic disturbance, was presented in [3]. However,

considerable advancement is necessary to enat)le similar predictions in a realistic setting.

In view of the complexity of the forcing fields encountered in practical applications, integrated transition

prediction needs to be performed within a stochastic framework that is capable of analyzing the effects

of randonmess and uncertainties in the flow environment. Tile concept of stochastic transition prediction

represents a major theme behind the work reported in this paper. Tile objective here is not so much to

develop and t)resent a well-tested recipe towards this goal, but to outline the various issues introduced by



stochasticity,explorepotentialwaysin whichtheymightbeaddressed,andexaminethepotentialmerits
anddemeritsof eachapproach.Althoughmainlyaimedat integratedtransitionandturbulencemodeling,
wenotethatsuchworkwouldalsoberelevantto developingstochasticcontrolschemesfor laminar-turbulent

transition.

In principle, statistical consideration of the forced-oscillator response should include the uncertainties

associated with both oscillator characteristics (i,e,, undisturbed laminar state) and the forcing environment.

Of these two, the stochastic character of the forcing is perhaps more important, and is what. is emphasized

here. In general terms, we consider how deterministic models for a given stage of the transition process

(which may be considered as well-established at this point.) may be extended to a stochastic setting by

treating the input conditions as random rather than fully specified.

In this paper, we assume that the dominant receptivity occurs through linear mechanisms and hence the

overall problem of stochastic disturbance evolution in a boundary layer may be decomposed into two separate

problems: the receptivity problem that predicts the statistics of initial disturbances (i.e., instability modes)

as functions of input forcing, and the propagation stage which predicts how these statistical characteristics

evolve as the instability wa_es amplify and eventuaJly interact through nonlinear n_echanisms. Given the

system parameters (i.e., a plant model), the response of a linear, deterministic system to stochastic input

can be predicted rather simply since the second moments of the response are directly proportional to those

of the input, with the scaling factor begin the known (deterministic) transfer function. Thus, it is relatively

straightforward to extend the available models for receptivity and linear growth to a stochastic setting.

Accordingly, we focus our attention on stochastic aspects of the nonlinear propagation phase, for which

there is no unique transfer flmction as the latter now becomes a function of the input parameters (i.e., initial

amplitude spectruln).

As transition progresses, a sequence of secondary and higher order instabilities are excited leading to the

emergence of smaller scales of motion; with continued excitation of small scales, memory of the details of the

original state fades, and gradually a statistically steady state of turbulence is reached. Two points are worth

noting in this context. First, as the system becomes chaotic during the laminar breakdown stage, stochastic

modeling is necessary even if there were no uncertainties in the. forcing environment. Second, stochastic

formulation of the transition models provides a natural link between transition theory and turbulence mod-

eling. Of course, passing from a deterministic to a stochastic transition analysis is not trivial, particularly

in view of nonlinearity of the problem. The details of the path to turbulence, in which different modes are

significant during different phases in the evolution, is highly case dependent. Therefore, a direct simulation

of the stochastic problem, which would require simulating a large number of these paths, is impractical. This

problem is nmch more severe than the problem of simulating fully developed turbulence, in which ergodicity

helps pernfit the evaluation of statistics. The present paper represents but a first step to a statistical model

of transition.

An outline of the paper is as follows. To begin, we briefly review the theory of receptivity, since in

many external flows, receptivity analysis will determine the initial disturbance spectrum. Following [8], we

emphasize the stochastic aspects of the problem, namely the connection between the random free-stream

disturbances and roughness distributions and the probability density function of the phase and amplitude of

the generated Tollmien-Schlichting waves.

The subsequent evolution of the generated instability waves (particularly, during the nonlinear stage) is

examined next. On a determinstic level, the disturbance evolution problem can be addressed using models

of varying degrees of sophistication and accuracy including Craik's model for resonant triads of Tollnfien-



Schlichtingwaves[12],rationalhighReynoldsnumberasymptotics[14],parabolizedstabilityequations[4],
largeeddysimulation[18],anddirectnumericalsimulation[33],[51].To achievethe goalof integrated
transitionandturbulencemodeling,westart byapplyingthesemodelsin astochasticsetting,treatingthe
initial disturbancespectrumasrandomratherthandeterministic.Webeginbyconsideringthesimplest
modelfornonlineardisturbanceinteractions,namelyCraik'smodel[12],whichprovidesasimplifiedaccount
ofnonlinearinteractionsviaaviscouscritical layer. Despite its shortcomings from the viewpoint of systemati('

asymptotics [14], this model has been shown to yield predictions which agree reasonably well with many

experimental observations [20]. In the present context, it provides a simple model to illustrate the combined

effects of nonlinearity and raildonuless oil the propagation of instability waves. Moreover, t)y connecting the

amplification of sut)harmonics to the growth of phase coherence, this model suggests a link between transition

and turbulence, wimre the growth of phase coherence is closely connected to energy transfer. Fully developed

turbulent flow exists because of a balance between triad interactions, which proInote phase coherence, and

tout)ling to all other modes which destroys it [23]. Tile resonant triad model can be understood froin this

viewpoint as the first phase in establishing this balance.

We next outline the extension of the resonant triad model to more complex interactions. Specifically, w('

examine the interactions between more than three instability waves, nonlinear effects in a non-equilibrium

critical layer, and predictions for tile strongly nonlinear regime. These extensions raise tile important issue

of modeling tile effects of higher order modes which have not been explicitly resolved by the model being

considered. The model which seems best suited for engineering predictions of transition and could potentially

extend into tile strongly nonlinear regiine is the parabolized stability equations (PSE) [16]. A preliminary

discussion is given concerning how PSE can be treated in a stochastic setting.

Finally, we describe our proposal for a general, integrated turbulence and transition model: a generalized

PSE restricted to a relatively small imml)er of modes with tile effect of the remaining inodes accounted for

through modified damping and random forcing. The crux of our proposal is that turbulence effects can also

be included in the model the same way. Such a model would be a conlpromise between transition-sensitized

Reynohls-averaged Navier-Stokes (RANS) and large eddy simulation (LES) or direct numerical simulation

(DNS).

2. Stochastic aspects of the disturbance generation and evolution through the weakly non-

linear stage.

2.1. Summary of the receptivity problem. Tile statistical analysis of transition in a convectively

unstable flow begins with the random initial conditions, which, barring uncertainties or inaccuracies in the

mean flow prediction, are the only source of randomness in the problem. In the Goldstein-Ruban-Zavol'skii

theory [15], [36], [52], receptivity is analyzed as the excitation of a free Tollmien-Schlichting wave through

the interaction between a specified ambient unsteady disturbance with surface roughness of known shape

and size. Provided that the wavenumber spectruln of the surface roughness and the characteristic frequency

of the ambient disturbance overlap respectively the wavelength and frequency of a free Tollmien-Schlichting

wave, in low-speed flows, this wave can be excited and subsequently amplified.

Receptivity analysis is most often formulated as a deterministic problem. Although some stochastic

aspects have been explored in [8], this analysis was limited to evaluating the rms amplitude of the instability

wave. By averaging over the roughness distribution, t)hase information is lost, and only averages remain.

This work has been extended to transient analysis of receptivity by formulating the problem as a stochastic

differential equation. The result is a description of the growth of receptivity amplitudes by means of a

Fokker-Planck equation [37]. The conclusion from this work for the present purpose is simply this: because



receptivityisa linearproblem,if thephasesin thedisturbanceenvironmentarerandom,thenthephasesin
theinitial randomdistributionof Tollmien-Schlichtingwaveswillalsoberandom.

Whilerandomnessof tilephasehasnoinfluenceon thelinearevolutionof the instabilitywaves,there
existcasesin whichtile disturbancephasecan have a significant impact ell the nonlinear evolution as

illustrated later in this section.

2.2. Resonant triad evolution in a boundary layer. The defects of deterministic transition pre-

dictions based on linear amplification alone are well-known: the analysis cannot account for tile rapid onset

of three-dinmnsional behavior as transition is approached, or for the mean-flow modification due to the dis-

turbance growth. This is because both of these features are due to disturbance nonlinearity and the neglect

of nonliuear effects on disturbance evolution eventually invalidates the theory. In the following subsections,

we illustrate the depemtence of disturbance evolution on the relative initial phase of different instability

modes in the simplest context to set the stage for a stochastic analysis of nonlinear disturbance evolution.

Many weakly nonlinear analyses have been introduced in transition theory to explain the onset of three-

dimensional behavior. We consider the simplest theory of this type, nainely Craik's theory [12] of resonant

interaction between a triad of Tolhnien-Schlichting waves which shows how oblique subharmonics can be

amplified, even if they are linearly damped.

2.2.1. Craik's model: deterministic triad interaction problem. The analysis [12] begins with a

primary, two-dimensional Tollmien-Schliebting wave in a two-dimensional parallel mean flow

i[ox-_'t](2.1) 02"3= Re {A:_O3(y)e }

which, together with a pair of resonant subharmonics,

(2.2) _1,2 = Re{,41,'eO1,2(y)e i[(0/2)_:t:2:-[_/'')_] }

represents a special case of a resonant triad of waves. Here, x, y, z denote the stremnwise, normal, and the

spanwise directions respectively; t denotes time, c_,3, and w denote the disturbance wavenumi)er and fre-

quency for a given mode, ¢i (i = 1,2, 3) denote the appropriately normalized eigenfunctions. Tile disturbance

amplitudes Ai (i = 1, 2, 3) are slowly varying functions of space,

10Ai
Ai=A,(x) withl Z_ [ <<c_(2.3)

or of time,

(2.4)
10Ai

Ai=Ai(t) withl _/--_- [ <<

depending on whether the disturbance evolves in space x or time t. The latter distinction is perhaps

unimportant for this paper. However, to facilitate comparison with previous deterministic analyses, we will

treat only the spatial case herein.

Under the parallel-flow assumption, Craik's heuristic analysis led to the following set of ordinary dif-

ferential equations for tim (complex) amplitudes of the resonant triad of waves defined in Eqs. (2.1) and

(2.2):

bl = 5bl + b._b_

b,2= 5b,2 + b3b_

(2.5) ba = ab3 + e_*blb,2



where bi, (i = 1, 2, 3) denote normalized forms of tile complex amplitudes .4i and the dot denotes differen-

tiation along tile evolution coordinate (i.e. x for the spatial disturbance evolution considered here). In Eq.

(2.5), 5 and a are the normalized linear growth rates of the subharmonic and primary waves respectively,

and the angle O models the effect of detuning between the primary and subharmonics. Eq. (2.5) applies

only in the parallel-flow limit, in which the nonlinear growth is assumed to occur on a scale that is much

smaller than the scale of the mean boundary layer growth (i.e. nonparallel scale). Eq. (2.5) also applies

more generally to problems in which the growth rates become weak functions of x through small effects of

non-parallism. This generalization will be used in a subsequent case study.

An important simplification of Eqs. (2.5) is provided by the equations for parametric excitation:

bl = 5bl + b:_b.*2

b'2 = #b2 + b'jb*1

(2.6) b,_= ab3

wherein the nonlinear term in the equation for the primary amplitude b3 has been dropped, hence b3 under-

goes purely linear growth. This limiting case corresponds to the parametric region I ba I, ! b2 I<<1 b:_ I which

is typical of the initial phase of nonlinear growth.

In terms of amplitude-phase variables defined by

(2.7) bi -- tie iO' ,

Eq. (2.5) becomes

ih = r2r3 cosO + 5rl

i'2 = r_r:_ cosO + 5r2

/"3 ---- rl r2 COS(¢ -- O) + o'r3

(2.8) 0 = rlr2 sin(O - O) - rlr:---LsinO -- r2r__33sinO
r3 r 2 rl

Observe that the amplitude evolution depends, not on tile individual phases Oi, but only on tile single phase

variable

(2.9) 0 = 01 + Oe - 03

Many special solutions and properties of the triad equations (:an be derived [12], [48]; however, for

the purposes of transition studies, a simple generic picture is adequate. In general, the subharmonics are

amplified, eventually overtaking the primary. During growth, the amplitudes of the subharmonics become

equal (rl = r2 = r) and a condition of phase-locking (0 = 0) develops. After the onset of phase-locking, the

solution undergoes explosive growth, leading to a finite-time singularity of the solution [48]. Amplification

can occur even if the subharmonics are linearly stable (5 < 0), and also even if the primary is linearly stable

(a < 0) [3O].

This behavior is immediately apparent from the closed-form solution for the case of parametric excitation

Eq. (2.6):

(2.10)

bl (t) -- _[bl (0) + b2(0)*]e (*_' -1)/a+St + [b, (0) - b2(O)']e -(e**-l)/_+et

b2(t) = _1[bl (0)* + b.,((})]e((_"'-j)/_+_t- _ [51(0)*- b2(O)]e -('_"'-l)/_+at



whichshowsthat thesubharmonicscanamplif.vexponentiallyevenif 6 = 0. Eq. (2.10) illustrates the

two features noted above: at sufficiently long time, amplitudes of the two subharinonics become equal (i.e.

I bl I=l b2 [), and b:b2 becomes real so that 0 approaches zero.

The parametric excitation case also reveals that amplification is phase-dependent: if b2(0) = -bl(0) is

real, so that. the initial phase 0(0) = 7r, then the growing double exponential term does not occur and we

have

(2.11)

bl(t) = bl(0)c -('"'-3)/"+_t

b2(t) = -bl(0)e -(e"t-l)/a+_t.

In this case, tile sul)harmonics will actually decay in the absence of linear growth.

We note that the dependence of subharmonic amplification on its phase relative to the primary wave

is well-known in the context of nfixing-layer instahilities [30]. Analogous behavior in wall-bounded flows,

albeit not equally emphasized in tile literature, has been mea_sured [39] and theoretically predicted [53].

Unfortunately however, the effects of initial phase lag on transition location have not been explored in detail

as yet. A preliminary attempt using admittedly crude modeling is made below (see Fig. 2.8). Further

examination using both nonlinear PSE and wind tunnel experiments is planned for the near flmlre.

The general features of triad evolution are depicted in Fig. 2.1 which were obtained fi'om numerical

integration of Eqs. (2.5) using a fourth-order Runge-Kutta method starting from initial values of the phase

0(0) = Nrr/4, N = 1,.--16. In all cases, initial amplitudes were heht fixed at. r_ (0) = r_(0) = 0.1, r3(0) = 1.0

with initial growth rates O = 0. (i.e. linearly neutral subharmonics), and a = 0.1. Figure 2.1 shows

both the evohltion of the phase, in which "locking" is clearly evident, and the evolution of the primary

and subharmonic amplitudes; a strong connection between subharmonic amplification and phase locking is

suggested by a comparison between tile phase and amplitude evohltion.
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FIG. 2.1. Effect of initial phase on subharmonic amplification in the nonlinear evolution of a resonant triad. The

downstream development of the phase variable 0 and of the primary and subharmonic amplitudes are shown for variable initial

O. Parameters in Eq. (2.,5) arc: a = 0.1 and gr = O: the dephasing factor 0 = O. Initial conditions arc: primary amplitude

r3(0) = 1.0 and subharmonic amplitudes rl(0) = r2(0) = 0.1. The initial phase 0(0) is uniformly distributed from -7r to 7r.

The governing equations are, fully nonlinear triad interactions, Eq. (2.5).



Observe that even though the triad system Eq. (2.5) supports an equilibrium solution of the form 0 = 7r,

that solution is unstable, with the only long-time attractor being tile phase-locked solution 0 = 0 as observed

earlier t)y [14] in a similar context using high Reynolds number asymptotic theory.

Fig. 2.2 shows the same calculation for tile linear theory of parametric excitation. The picture is

naturally considerably simpler since the primary only undergoes linear growth. The curve with 8(0) = 7r

maintains its initial value througout. Therefore, unlike the fully coupled case illustrated by Fig. 2.1, the

subharmonic amplitude in this case continues to decay during its evolution.

01 _1 ........

01 0.2 0.3
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FI(;. 2.2. Effect of initial phase on subharmonic amplification in the case of paramctrzc excitation. Disturbance parameter._'

and initial conditions are as in Fig. 2.1.

2.2.2. Stochastic formulation of triad evolution: probability density function approach.

The analysis of subharmonic growth suggests a role for a statistical theory of resonant interactions. Since

the growth of subharmonic disturbances depends on their initial phase, an exact description will require a

knowledge of the initial phase; but if these initial conditions are referred to a receptivity calculation, then

as Sect. 2.1 suggests, even if the initial disturbance amplitudes were known with relative precision, the

initial phase distribution could not be established in general. Thus, the initial conditions for the theory of

subharmonic growth are best described by a probability density flmction (PDF) for initial amplitudes and

phases. Fronl this viewpoint, the best description of subharmonic growth is given by the evolution of this

PDF.

For the sake of brevity, we formulate the evolution equation for the case of equal subharmonic amplitudes,

rl = r=, = r. This condition is preserved by the equations of motion, and as noted previously, the system

eventually ew)lves to this condition in any case. Applying standard methods [31], one finds that the joint

probability density P(r, ra, 0; t) of amplitudes r, ra and the phase variable 0 satisfies the first order partial

differential e(luat ion

0-7 + (F_P) + (FaP) + (FOP) = 0(2.12)

wher(,

F,. = rra cos 0 + _r

Fa = re cos(O- O) + ara



r 2

(2.13) Fo = --sin(¢ - 0) - 2r3 sin0.
?'3

Closed equations for the moments of P cannot be obtained, since moments of any given order are found to

depend oil moments of higher order.

The initial PDF is taken to be independent Gaussian distributions for amplitudes, and initially uniformly

distributed phase,

(2.14)

where

1 T

P(r, r:_, 0; 0) = _--_._ (r I r0, a0)N(,':_ I r:,,0, <,)

1 _(x_xoi:/uc_2
(2.15) N(x I x0,er) - _e

Since Eq. (2.12) is a linear first-order partial differential equation in a conservative form, numerical

integration is straightforward. The method used for solving this equation numerically is described in detail

in Appendix I. The numerical integration reproduced the qualitative features of the deterministic analysis as

described earlier via Figs. 2.1 and 2.2. The marginal probability densities for subharmonic amplitude and

phase,

P(r3, t) = dr dO P(r, ra, 0; t)

(2.16) P(O, t) = dr dr3 P(r, r3, O; t)

are shown for the case of parametric excitation in Fig. 2.3.

This case is chosen for preliminary code verification because the primary amplitude probability density

must be constant as a function of the centered normalized variable _ = (r - (r))/a. The primary amplitude

PDF remains Gaussian and unchanged after this normalization. Fig. 2.3 shows that the suhharmonic

amplitude becomes bimodal as time increases. The bimodality arises because paths exist for which the

subharmonic amplitude decays at first. This M-shaped PDF can tie compared with the measurements of

[29] in the analogous case of a transitioning mixing layer. Fig. 2.3 also presents another picture of the strong

tendency to phase locking.

For quantitative validation of the method, we compare the results with some partially analytic results

available for the case of parametric excitation. A straighforward calculation shows that the distribution of

phase is related to the initially uniform distribution _, through the equation

1 - cos _/_
(2.17) dO

-2Rsin2 '_ + (cos _'_- 1)2R _d_/_

where _/) is uniformly distributed, and the factor R is the double exponential of Eq. (2.10), i.e.,

(2.18) R = exp[ 1 exp(at - 1) + c_t].

The marginal probability density fimction of the phase is compared with the exact result in Fig. 2.4 . The

agreement is satisfactory. Analytical expressions for the amplitude PDF's cannot be derived; however, the

mean and variance of the primary and subharmonic are easily evaluated numerically in this case. The results

are compared with the predictions of the PDF code in Fig. 2.4. The agreement is satisfactory except that

the predictions of the subharmonic standard deviation become inaccurate near the end of the simulation.

This inaccuracy may reflect the low order accuracy of the finite volume algorithm used in the code.
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2.3. Stochastic form of triad evolution: particle method. Although direct solution of the PDF

evolution equation Eq. (2.12) is feasible, the computation time required is excessive. Even with the o.s-

sumption that the amplitudes of the two subharmonic modes are equal, integration up to the time that the

subharmonics exceed the primary required several days on a workstation. As noted in Ref. [31], the inain

difficulty in integrating an3' PDF evolution equation is dimensionality: updating a PDF with d variables

with N degrees of freedom each requires about N d operations per time step.

The particle method of Pope [31] mitigates this difficulty at the expense of a coarser description of

the PDF. In the present problem, the particle method can be formulated a_s follows. Consider the general
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problem with independent amplitudes rl, r2, r3. Replace the initial PDF by a sum of delta, functions,

P(rl,r2,r3,0;O) _ E P(n_,7*._,n3,no) x

(2.19) 6(r] - r,, I )6(r2 - r,,2)6(ra - r,3)6(0 - 0,,,)

where the points r,,;, 0,,0 at which tile PDF is sampled are arbitrary, but deterministic. These points could

be chosen based on a Gaussian quadrature scheme, for example. Note that if the variables ri, 0 are assumed

to be independent initially, then

(2.20) P(n4, _2, n:_, no) = P(n_ )P(n.z)P(n3)P(O)

Next, the deterministic evolution equations are integrated for an ensemble of initial conditions rl(0) =

r,_,, re(0) = r,,=, r3(0) = r,,._, 8(0) = 0,_0. The PDF at time t is approximated by the discrete sum

P(rl'r2'r3'O;t) _ E P(nl,n2,Tta,no) x

(z21) _(,., - ,.,,, (t))_(r._,- r,,_(t))_(,':, - r,,_(t))_(o - o,,o(t)).

This scheme is not a Monte Carlo method, because the initial PDF is not sampled randomly; instead, the

sampling is deterministic but weighted according to the specified initial PDF. An important feature of the

method, which is evident from Eq. (2.21), is that it conserves total probability.

To assess the accuracy of this particle inethod, the statistics shown in Fig. 2.4 were recomlmted and

coinpared with the exact results in Fig. 2.5. Evidently, the agreement is much more satisfactory.

F

05

/

1 2

x

FIG. ').5. Comparison between theoretical and computed amplitude statistics for parametric excitation: lines - computation
(particle method) symbols - theory. Initial conditions and disturbance parameters _, 6,0 are as in Fig. 2.1.

One nmst note, however, that one of the advantages of the probability density function approach is that

it is robust with respect to any finite-time singularities observed in individual solutions of the deterministic

evolution equations. The particle method, on the other hand, requires one to remove any trajectories that

approach a singularity (and to account for this removal in some reasonable Inanner). However, this is not

necessarily a significant limitation as the singularities indicate limitations of the underlying (deterministic)

model and, hence, are either delayed or bypassed altogether in a real application after the model is suitably

generalized to include the relevant physics neglected previously.

11



2.4. Stochastic triad evolution: case study and comparison with experiment. The particle

method was applied to examine stochastic aspects of the triad evolution in a fiat-plate boundary layer. In

particular, the case of a symmetric resonant triad which had previously been examined in Ref. [53] ill a

deterministic setting wa_s considered. This triad was comprised of a two-dimensional fundamental wave with

a dimensionless frequency F = 115 x 10 -6 and its subharmonics with a spanwise wavenumber given by

�3�Re = 0.22 x 10 -6. (For a definition of these dimensionless parameters, the reader is refered to [53].)

To allow for the effects of the growth of the mean boundary layer, as well as the effects of small detuning,

the triad equation set Eq. (2.5) was replaced t)y the slightly inore general system

b 1 -_- b(x)bl + S1,23(x)b_b3

5_, = 5 (x)b_, + S2,13(x)blb 3

(2.22) b3 = a(x)b3 + S3,v2(x)b_b2

where the x dependence of the linear growth rates a and 5 and the nonlinear interaction coefficients reflect

the effects of weak mean-flow non-parallelism. The interaction coefficients St,jk can be complex to allow

for detuning effects. The evolution variable is streamwise distance, measured in this case as a downstream

Reynolds number. This system can also be written in terms of amplitude and phase variables as

['l = 5r, -4-/_l,23(x)r2r3 cos(0 nt- Ol(X))

i',, = 5r2 + R2,31(x)r2rl cos(0 + q_2(x))

_:_= a,':_+ Rz,12(x)rl r._cos(O3(z) - 0)

-- " " 7"2 ?'3(2.23) (_ = R3,v_' rl r2 sin(0a(x) - 0) - R., 31 rlr3 sin(0 + ¢2(x)) - R1._3 " " sin(0 + ¢1 (z))
F3 1"2 1"1

where we have set

(2.24) Si,jk = I_i,jkC iOi .

The values of tile nonlinear coefficients S_,9_. as functions of the Reynolds nulnber were based on Table

1 of [53]. The initial PDF is given in Eq. (2.14).

The results are shown in Fig. 2.6. The right-hand graph can be compared with Fig. 2 of [53]. The

subharmoni(' amplitudes are initially unequal; however, the tendency of these amplitudes to equalize is

evident. The subharmonics overtake the primary at a Reynolds number of about 700., in agreement with the

analysis of [53]. After this point, the entire system undergoes explosive growth leading to a singularity in all

three amplitudes. The left-hand graph shows the corresponding phase evolution. Both the close connection

between the development of pha,ue locking and the onset of explosive nonlinear growth and the effect of initial

phase on subharmonic growth which were observed in the previous model problems also exist in this more

realistic example.

In order to ilhlstrate the connection I)etween subharmonic amplification and transition, the conditions

analyzed in [53] were modified slightly. In Fig. 2.7, the initial amplitudes of the two subharmonics are

one-half the iIfitial primary amplitude. Initial standard deviations of the amplitudes are set at ten percent

of the mean. The effect of initial phase difference on subharmonic growth is considerably enhanced by this

change of initial amplitude.

To connect this analysis to transition, Fig. 2.8 shows the probability that the subharmonic amplitude

exceeds the local primary amplitude. Although the crossover location is not the same as the transition

onset location (which cannot be predicted within the limited framework of resonant triad interaction), it

12
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local Reynolds number. All triad evolution parameters are based on Fig. 2 of Ref. [53], except that the initial subharmonic

araplitudes are both equal to 0.5 times the initial primary amplitude.

does harbinger the potential onset of stronger nonlinear interactions and, hence, the approach of transition

(assunfing, of course, that the primary amplitude involved is significantly large as well).

With a suitable generalization of the underlying model, then, a stochastic transition theory will indicate

the probabilistic spread in transition location as a function of uncertainties in the initial disturbance char-

acteristics. In that spirit, Fig. 2.8 may I)e viewed a.s a measure of variation in transition onset probability

with downstream location.

A qualitative comparison with experimental results [39] is shown in Fig. 2.9. Here, the subharmonic

amplitude at selected downstream locations is plotted as a function of initial phase difference between the

primary and subharmonic waves.
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3. Extension of stochastic formulation to more general nonlinear disturbance evolution

models. By accounting for the rapid onset of three-dimensionality in transitional flows, the resonant triad

model overcomes one of the important limitations of linear stability theory; this was actually one of the

motivations behind the original development of the theory. Nevertheless, the resonant triad model cannot

be used to predict the onset of transition in general flows. One obvious problem is that by limiting the

analysis to a system of only three interacting modes, resonant triad theory can describe neither a wide-band

spectrum of initial disturbances nor the generation of a wide-band spectrmn through nonlinear interactions as

transition proceeds. Moreover, like linear theory, it predicts an indefinite growth of the disturbances, which

ultimately contradicts the starting assumption of weak nonlinearity. Finally, transition may not necessarily

occur a._ a consequence of resonant triad interaction: there exist other, qualitatively different scenarios such

as oblique or fundamental breakdowns and wave-vortex interactions, which may initiate transition and which

14



may require a different type of modeling.

We will therefore discuss other deterministic disturbance evolution models and their implications for

statistical modeling.

3.1. Overview of deterministic models. Tile simplest way to improve tile resonant triad model

is to increase tile number of modes in the analysis. Although this type of model remains restricted to

weak nonlinearity, the growing distnrbances can be spread over a larger number of modes; the consequent

possibility that the amplitude of any one mode can saturate might extend the limits of applicability of the

assmnption of weak nonlinearity. Evidence supporting this conjecture comes from the analysis of a five-wave

resonant system in [53], in which it is found that tile effect of additional modes is to delay the onset of

explosive nonlinear growth.

Standard perturbation methods can be used to derive governing equations for more complex interactions

of wave amplitudes. The simplest generalization of tile resonant triad model is [53]

(3.1) + }_"1,1 + I{:2.tT _ At = 3tAt + y_ l.t,j+k,.-.qljkAjAl,:
JA"

where tile indices l, k, j vary over a finite set of modes. In addition to describing tile interactions of a larger

set of modes, Eq. (3.1) allows for off-resonant interactions through the variation of the phase factor ]tl,j+k.

Under strongly off-resonant conditions, tile various modes can still communicate through the mean-flow

correction (A0) which is retained in this model. Of course, the significant distortion of mode shapes (and

concomitant modification of the growth rates Yt) under a strong enough mean-flow correction is not explicitly

accounted for in the model. The model also allows spanwise modulations of the modal amplitudes.

In the framework of the same perturbation scheme, the equation which incorporates the next order

corrections is [53]

+ w_,_ _ + W2,t - "Yt- -_ \ 0c,20x._ + 0_0;_ OxOz + -5_ Oz2 .-b

(3.2) = Z + + c,; W) + Z
j,l," r

This equation exhibits higher order nonlinearities through the cubic coupling terms, a more complex,

t_{l) (,(2)
amplitude-dependent dispersion through the terms proportional to _lj_. and _ljk, and dependence on the

spatial derivatives of the modal amplitudes. The definitions of all the coefficients are given in the original

reference [53].

The question arises whether the higher order models like Eq. (3.2) represent an essential improvement

over the lowest order approximation Eq. (3.1). The answer is that this entire class of nonlinear theories

has fundamental limitations which are not addressed by fornmlating higher order theories. As mentioned in

the Introduction, this entire class of models can be criticized from the viewpoint of more systematic high

Reynolds number asymptotics, because these theories do not properly reduce to linear theory in the far

upstream limit. In fact, as noted by [53], the 'self-consistent assignment of harmonics at x = 0' constitutes

a difficulty for the theory. Moreover, evaluation of the coefficients in terms of linear eigenfunctions shows

that their values are dominated by contibutions from nonlinear critical layers. This observation suggests an

important role for the nonlinear development of the critical layers.

Both of the above considerations have led to a re-evaluation of triad and generalized triad theories from

the standpoint of systematic high Reynolds number asympotic expansions. A representative result is the
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integro-differentialequationofGoldsteinandLee[14]

dA _ 4 1+ 2_i f_ (x- xl)2A:_(xl)A*(2x- xl)dxl
dx 5 5 J_._=

f/;i+i K1 (x I xi, x2)A(xi )A(x2)A*(xl + x2 - 2x)dx2dxl
(X:

dA___3= (1 + i_i)A3 - i [2(x - xl)3A3(xa)A(x2)A*(2xl + x,_ - 2x) +
dx oc : -

K.,(x I xl ,x2)A(Xl )A3(x2)A*(xl + 2x2 - 2x)]dx2dxl

(3.3) +i K3(x Ix1, x2, x3)A(xi )A(x2)AIx3)A*(xl + x2 + x3 - 2x)dx3dx2dXl.

Ill this equation, tile primary amplitude is ,43, and the subliarmonic amplitudes are A1 -- ,42 = ,4. The

coefficients _i and kernel functions Ki are known in terms of closed-form expressions. All of the relevant

definitions are given in [14].

The form of the integral terms on the right sides of Eq. (3.3) show that the solution matches the linear

solution in the limit x _ -oc. Achieving the corre(:t matching was indeed the goal of the entire analysis.

It is reassuring that, in spite of the differences in the form of the nonlinear term involved, solutions of Eli.

(3.3) in fact are qualitatively analogous to those of Craik's model. There is an initial phase of t)arametric

amplification of the subharmonics followed by explosive nonlinear growth of all three modes. The same

sensitivity to initial relative phase also exists; the nonlinear growth phase of the evolution can be delayed

for certain values of initial phase [14].

A simpler equation than Eq. (3.3) has been derived in [28]:

dAo
- _oAo

dr.

(3.4) dA 37r R 3 L _'dx nobA + --_-- = _-'iA*A0 + iMd(x) dx' I A(_ - x') I>-

The linear growth of the primary suggests purely parametric excitation, but the subharnionic evolution

equation contains both an algebraic nonlinearity similar to the Craik model (attributed to a viscous critical

layer), and a nonlinear self-interaction term. Indeed, after dropping the self-interaction terln, Eq. (3.4)

reduces to a special case of Eq. (2.6). Again, all of the notation in Eq. (3.4) is defined in [28]. Analogous

theories h)r other types of wave interactions such as wave-vortex interaction, oblique mode t)reakdown, and

phase-locked interactions have also been developed; see, for instance [10], [50].

While the asymptotic theories have aided greatly in our understanding of the various transition scenarios,

each of them pertains to some specific kind of dominant physical balance. Also, in some cases, the underlying

asymptotic behavior is only established at impractically large Reynolds numbers. Hence, such models are

perhaps not well-suited for engineering prediction of transition. Another transition model, which accounts

for mean-flow nonparallel|sin and disturbance nonlinearity in a composite sense, is the PSE model introduced

by Herbert [4], [16]. Albeit not as rigorous as tile high Reynolds number asymptotic theories, it is better

suited as a general purpose transition prediction tool and has been shown to yield surprisingly accurate

predictions through somewhat past the rise of the mean skin-friction curve.

To formulate the PSE for a two-dimensional incompressible mean flow U0(x,y), the disturbance field

fi(x, y, z, t) representing both velocity and pressure is written as a Fourier series

(3.5) fi = Z n .....,(x,y)e i('ns#z-'_t)
T#I, II
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where the complex amplitudes Am,. are further decomposed into a slowly varying shape function and a

rapidly oscillating phase

[# ](:3.6) Am,,,(x,y) = _ .... _(x,y)exp i a,,,,,(x')dx' .
x0

Tile wavenumbers _m,,, are determined so that the downstream evolution of the complex amplitudes _I',mn is

as slow and smooth as possible. While there are many alternatives to implenmnt this constraint, a common

one is the integral

0q'*(a.7) d:v ,I,. 0x - 0

where the asterisk denotes complex conjugation. The above constraint both renders the decomposition in Eq.

(:3.6) unique and ensures the approximate validity of the marching approximation to the originally elliptic

Navier-Stokes equations. The details of this procedure are discussed, for example, in [6].

Tile final PSE equations can be expressed in the general fornl

0_,,.,, 0_., ,, _ V 02_I'' "
(3.8) D,,, ,,ram ,, + A,,, ,, _x' , , +Bin,,, _yy' ,,,.,, 0_12'y +fm ,,.,

Here the matrices Am,,,,..-Din.. depend on the complex wavenumber a,,,,, and its streamwise derivatives.

The nonlinear forcing term f,,,n can be written as a suin of nmltilinear forms:

f,, .....= f,,,,,(q.',V@) = Z Bi,j.l,.a[q_i,j,V@,_.z] x
i+k=m,j+l=n

[// ](3.9) exp i ai,j(x'} + _ka(x') - c,.,,.(a")dx' .
o

In what follows, the indices on the multilinear forms B and its argunlents will be dropped to simplify the

notation.

The mode @0,o represents the mean flow perturbation. The evolution equation for q*0,o

. 0g'o o 0_I'o o 02_0.o

(a.lO) Do,o@o,o + Ao.o_ + Bo,o _--_y' -- Vo,o_ + fo,o

contains tile mean Reynolds stress gradients fo,o. Hence, the equation for the total mean velocity field

U = Uo + @o,o (where the suin is restricted to velocity components Olfly), is governed by

02U
U. VU = -VP + u-gTu,, + i'o.oy-

(3.11)

where

(3.12) fo,o = Z B[* .... ,, V_I'_., _,, I.
m,n#O

The PSE equations provide a closure for the term f_,o since evolution equations for _',,,,,_ are given by Eq.

(3.81.

The PSE equation Eq. (3.8) is a type of triple decomposition in which the fluctuations are projected onto

components which have known evolution equations rather than being separated into steady and unsteady

parts as in Reynolds averaging. The terms f,n,,, with (re,n) # (0,0) which also arise in the PSE can be

understood as generalized Reynolds stress gradients.
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PSE calculations in this form have typically been carried out only for a short distance past the point at

which the skin friction begins to rise. Eventually, the iterative numerical process (which includes nonlinear

iterations coupled within the interations required to determine the functions a,,,,,, in Eq. (3.6)) fails to

converge before laminar breakdown is comifleted. To some extent, the nonconvergence Inav be delayed by

treating the nonlinear 'source' term in an implicit fashion ([2]). However, the validity (or at least accuracy)

of the PSE model itself becomes questionable in the laminar breakdown region. This region involves a

rapid adjustment of the mean flow from laminar to turbulent flow, typically over a rather small number of

waw'lengths. This means that the terms in O"-/Ox 2 are not necessarily negligible, and that the decomposition

of the fluctuations into "wave" and "amplitude" components becomes suspect. Only extensive testing will

show whether or not the PSE could be applied into the breakdown region. Therefore, from the standpoint of

integrated transition and turbulence modeling, it will be desirable to switch over to a conventional turbulence

model somewhere in the breakdown region.

3.2. Stochastic formulation: PDF evolution equations for modal amplitudes. W_ now con-

sider how to recast the deterministic models from Sect. 3.1 in stochastic form, specifically as a closed

evolution equation for the joint probability density function of modal amplitudes. These models fall into a

natural hierarchy, which progresses from purely algebraic nonlinearity (Eq. (3.1)), to integral nonlinearity

(Eq. (3.3)), to a nonlinear partial differential equation (the PSE system Eq. (3.8)). As already noted at

the I)eginning of this section, except for requiring tile resolution of a PDF with a very large nunlber of

independent Inodal amplitudes, there is no difficulty in formulating a closed PDF evolution equation ¢:c)r-

responding to systems like Eq. (3.1) with purely algebraic nonlinearity. However, the formulation of PDF

evolution equations for systems with non-algebraic nonlinearities like Eq. (3.3) and Eq. (3.8) will present

closure difficulties.

An expanded set of modes, as suggested in Eq. (3.1), is easily accomodated in tile stochastic formulation,

at least in principh_. The only problem with an expanded set of modes is the practical problem of solving

a PDF evolution equation containing a large number of modes. However, deriving evolution equations for

the joint probability density function of modal amplitudes corresponding to either high-Reynolds number

asymptotic theories or the PSE model introduces a new difficulty because ttmse equations all couple infor-

mation from different points, either through the spatial derivatives which occur in Eqs. (3.1) and (3.2), or

through the spatial integral in Eq. (3.3). This coupling between different points m'_es it impossible to

derive an equation for the single-point probability density without closure assumptions as described below.

In goneral terms, given an evolution equation for a random field A(x)

(3.13) A = f(A, VA)

where the dot denotes differentiation with respect to the evolution variable, the probability density 7_(A)

satisfies the continuity equation

(3.14) O'P 0
Ox - 0,4 [(f(A, VA) [ A) 7_].

The unclosed conditional expectation (f(A, VA) ] A) occurs in Eq. (3.14) because the derivative VA

couples information from any point x to information from infinitesimally nearby points. The conditional

expectation projects this information onto local information at x. As an alternative, it is possible to formulate

the continuity equation for 7) without conditional expectations, but only as a coupled equation for both 7)

and the two-point joint probability density 7)2(A, A'), where A = A(x) and A' = A(x_). This again leads to

an unclosed hierarchy of equations for joint PDF's of higher order.
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ConditionalexpectationsdonotappearinCraik'striadmodel,becausein thenotationof themodelEq.
(3.13),f depends only oil tile local amplitude ,4, hence trivially

(3.15) (I(A) I d ) = f(A),

which allows an immediate closure for the Craik triad system. On the other hand, assuming that the matrix

A is invertible, the evolution equation for the probability density P(_) corresponding to the PSE equations

Eq. (3.8) is given by

0--_-+ _ A-_D_ + B [_

I v + (f(V,VV) lV) P = 0

which obviously contains unclosed conditional expectations.

Here we will only outline the simplest, most basic closure scheme for the PDF equation Eq. (3.16), the

conditionally Gaussian closure [13]. The basis of the closure is the observation that in a Gaussian random

field, conditional expectations containing multipoint quantities are all closed by linear regression, which is

exact for Gaussian fields. To illustrate this idea, consider the simplest case of a zero mean homogeneous

Gaussian random field O(x). The Gaussian property implies that the conditional expectation of the field

value ¢(x + r) given the value ¢(x) satisfies the linear regression equation

(¢(._ + _)¢(x))
(O(x + _) I 0(_)) = ¢(x).

(¢(_)")
(3.17)

Consequently,

{0'(_))) ....
(3.18) (*"(_)1¢(_)) - _,_:)

and other derivatives can be evaluate(l similarly. The conditionally Gaussian closure simt)ly applies results

like Eq. (3.18) to a general random field, even if it is non-Gaussian. This step can be compared to the

quasi-normal hypothesis often invoked in moment ch)sures.

Of course, application to PSE would involve inhomogeneous random fields. The requisite modifications

of Eq. (3.17) are presented in Appendix II. Here, we simply quote the resulting closure for the PSE equation,

A-' D_ + A-' B \--_--u + C(tI,, tI,). C(_, _)[_I, - (@)]

+A-'V + _C(_,_)- C(_, _)[_ - (qJ])]

(3.19) O_C(,, ,). C(,, .)[,- (,)],)] T)} =0

This equation contains first and second order statistics of the field • which are defined in terms of the

probability density T' by

(3.20) (V) =/dq_ '_7_('_)
J
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and

f

(3.21) C(_, _I,)-- [d_ *I,_P(_I,)
!

In E(I. (3.21), the product q_ is an outer product.

We have not yet addressed the issue of how to implement an integral constraint such as Eq. (3.7) in

a stochastic formulation, however, further comments are offered in Sect. 3.3 below. Although Eq. (3.19)

provides a coml)lete theory of tile evolution of the joint probability density function of modal amplitudes, it

must be emphasized that it is 1)ased on the assumption of tile conditionally Gaussian closure. As in turbulence

theory, this assumption cannot be justified a priori; its evaluation can only be based on comparisons with

experimental or numerical data. Although not be discussed ill this work, other closure schemes based on

real)ping closure or on Wierner-Hermite expansions (Y. Kaneda, private communication) are also possible.

However, they will all require a significant effort in terms of formulation, validation, and refinement. Thus,

similar to the triad model in Sect. 2, it is worth investigating the application of the particle method to the

PSE system.

3.3. Stochastic formulation: truncation of modal amplitude equations and Langevin models

for transition. Tile particle method will require cal(:ulating a large numt)er of individual trajectories with

a deterministic model, whether the PSE or other deterministic model. Any PSE calculation obviously will

require a truncation of the Fourier series Eq. (3.5) to a finite sum of inodes. However, to facilitate the

conqmtation of the required number of particle trajectories, it is necessary to further reduce the number

of modes retained in whatever deterministic framework is applied for the stochastic analysis. Accordingly,

ill the present section, we consider how a reduced order model couht be obtained as part of the stochastic

formulation. This anlounts to deriving 'effective' equations governing a limited numt)er of explicitly resolved

modes. Such model reduction is particularly important fi)r natural transition, which would contain a wide

spectrum of modes at the outset.

For simplicity, consider a general resonant interaction model

(3.22) .-ii = ?oAj + C_ikAjAA. (i,j,k = 1,N)

where the matrix ?i) is diagonal, so that there is no linear coupling between the modes.

Suppose that the modes can be divided into two sets: slow, large amplitude resolved modes A +, the

modes A/with 1 < i < N_, and fast, small alnplitude unresolved modes A-, the modes Ai with N_ < i < N.

Let it be required to model the evolution of the complete system by solving modified equations for the

resolved modes alone. It is possible to rewrite Eq. (3.22) for the resolved modes in the form

(3.23)

-, _ + +
-21+ = (_fip + 6ip,,Ar )A_+ + CipqAp Aq + C,_A,TA_-

+ +
= %,A + + CivqAp Aq + fi

where we have introduced the effectively modified linear growth rates

(3.24) -_*, zp = ")'ip + gip

where

(3.25) giv = CivrAr
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and the forcing attributed to unresolved interactions

(3.26) f_ = C_r_ATA- j.

At this point, Eq. (3.23) is nothing more than a formal restatement of the original equations Eq. (3.22).

But since the unresolved modes are assumed to vary rapidly compared to tile resolved modes, it may be

reasonable to replace tile terms fi and gip in E(l. (3.26) by random quantities with statistics to be evaluated

from tile resolved part of tile motion. Thus, we replace the term fi by a random force with correlation

function

(3.27)

and the quantity gw by a random tensor with correlation function

(3.28)

This approximation replaces tile problem of ext)licitly comtmting the evolution of the unresolved modes with

the problem of modeling of the correlations on the right sides of Eqs. (3.27) and (3.28).

Eq. (3.23) shows that the unresolve(l modes modify the linear growth rates and act as a random force

on the resolved modes. These effects will reduce the phase coherence of the resolved modes and could

consequently prevent tile indefinite growth of the disturbance amplitudes. One may also observe this on the

basis of the PDF evolution equation for this model. In the absence of any random forcing, the PDF evolution

equation only contains spatial derivatives of the convective type (see Eq. (2.12)). Random forcing will add

diffusive terms to this equation and diffusion will counteract the tendency toward phase coherence exhibited,

for example, in Fig. (2.4). The link between the reduction of phase coherence and the suppresion of modal

amplitude growth is demonstrated experimentally in Refs. [9] and [29]. Another viewl)oint on this link in

the context of resonant triad theory appears in Ref. [48], which observes that higher-order nonlinearity of

the type exhibited in Eq, (3.2) causes anlplitude-dependent reduction of phase coherence, which entirely

suppresses explosive growth.

To investigate the connection between reduced phase coherence and inhibition of subharmonic growth

more closely, we repeated the simpler triad computation from Ref. [53] after modifying the phase in Eq. (2.23)

by adding white noise of various amplitudes to its right hand side. This phase randomization is equivalent

to randomization of the coefficient matrices in the modified PSE equations Eq. (3.45). Specifically, we set

r2r3 . ,_
(3.29) O = rlr2 sin(C- 0) - rlra sin0 - --smtl + Aw(x)

y3 r2 rl

where w(x) is a white noise process and the amplitude ,4 was set equal to 0.010, 0.050, 0.100, 0.200. The

degree of phase decorrelation caused by the random forcing is revealed by comparing the phase evolution

shown in the left-hand plots in Figs. 3.1 3.4 with the phase evolution in the absence of random forcing

shown in Fig. 2.6. At the smallest noise amplitude A = 0.010, tile phase locking near 0 = 0 is only

weakly perturbed: the phase fluctuates by about 0.17r about the deterministic value. At this level of phase

randolnization, the nonlinear evolution of the phase dominates the effect of random forcing. But when

A = 0.200, it is apparent that. the phase evolution is almost, entirely dominated by the random forcing,

and the phase appears to evolve as a Brownian motion. Correspondingly, subharmonic growth is almost

entirely suppressed in this case. Intermediate values of the noise amplitude delay the crossover between the

amplitudes of the subharmonics and the primary.
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Westressthat in Figs. 3.13.4,tile suppressionof energygrowthin tile subharmonicshasbeenac-
complishedentirelythroughphaserandomization:energyhasnotbeenremovedfromtile systemdirectly
in thesecalculations.In effect,thephase-lockedattractor,whichi)romotessubharmonicgrowth,hasbeen
destroyedbystochasticity.

Anotherviewpointon theconnectionbetweenphasecoherenceandnonlineargrowthis throughthe
bicoherence [29], [35]. This statistic is a third-order joint moment which measures the correlation between one

modal amplitude and the product of two others. Large bicoherence indicates strong triadic coupling between

modes, which cannot be revealed by second-order statistics. Experimentally, it has been observed that in

forced transition, the bicoherence spectrum is initially strongly peaked, indicating three-m<)de resonance.

As transition proceeds, the bicoherence spectrum broadens and weakens, indicating that more modes are

coupled to each other, but that the degree of correlation between them has been reduced. In flmlre work,

we will consider the possibility of modeling this aspect of transition through stochastic PSE models, which

have a more general validity than the t)resent stochastic triad model.

600 700
Re

10_I_I_/ h J , I I , , i I , ,

600 7O0
lie

FIC. 3.1. Effect_ of random noise perturbation of phase evolution equation on subharmonic amplification during resonant

triad evolution. The conditions are. those of Fig. 2.6, with white-noise perturbation of the phase evolution equation Eq. (3.29

with amplitude .4 = 0.010.

To complete the reduced-order modeling, the correlations Eqs. (3.27) and (3.28) must be expressed in

terms of the resolved fields alone. As an example of a possible approximation, sut)pose that the amplitudes

of the unresolved modes are small enough that nonlinear interactions among them can be ignored. This

approximation leads to the simple "driven-mode" approximation

+.+
(3.3[)) _4_- = "/ijAj -b Cijl.Aj A k •

This equation can be soNed explicitly in the form

(3.31) A_-(x) = dy Gii,(x - y)Ci,jk(y)A+(y)A+(y)

where

(3.32) Gii, (x - y)Sw e -_'' (x-_)

is the linear response. The substitution of Eq. (3.31) for the amplitudes A_- in Eqs.

achieves the goal of ext)ressing these correlations in terms of the resolved modes A +.

(3.27) and (3.28)
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FIG. 3.3. Effect of random noise perturbation of phase evolution equation on, subharmouic amplification during resonant

triad evolution. The conditions are those of Fig. 2.6, with while-noise perturbation of the phase evolution equation Eq. (3.2.9

with amplitude .4 ---- 0.100.

Because it uses the linear response function Eq. (3.32) to elinfinate the unresolved modes, this approx-

imation can be compared to the quasi-normal theory of turbulence. A refinement is offered by the direct

interaction approximation (DIA) [23]. This approximation was developed as a statistical closure theory for

systems with a large number of nonlinearly coupled modes. Applied to a general system with a quadratic

nonlinearity, the basic assumption behind this approximation is that the nonlinear interactions among any

specific modal triad may be treated as snmll, although the overall effect of all possible triad interactions may

nevertheless be quite significant.

The DIA improves on the quasi-normal theory by replacing the linear response function of Eq. (3.32) by

a generalized response function defined as follows. First, evaluate the linearized equation for the response of
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A to an infinitesinial perturbation _i as

(3.33) 6.4-[ = ._,j&_lf + C,jkf.4; A; + Ciik.4f 6.4_ + _,.

The generalized response function is defined a_s the average 'sensitivity matrix'

I A:\
(3.34) C,j = \ (f_j /

which replaces the linear response flmction Eq. (3.32) in Eq. (3.28). The theory is (:ompleted by an evolution

equation for the response matrix Gij. In the context of trmlsition theory, the generalized response fimction

can perhaps be comt)ared to the quantities (i of the PSE: unlike linear theories based on the Orr-Sommerfeld

equation, PSE determines these functions in a fifily nonlinear, coupled fashion. Similarly, the DIA response

function replaces the linear response by a quantity which accounts for nonlinear interactions.

Note that t h(, integration in Eq. (3.32) introduces history effects, similar to the high-Reynolds number

asymptotic models. This again introduces closure difficulties for stochastic formulations of the amplitude

evolution equations.

3.4. Link to turbulence modeling. The results of Sects. 3.2 and 3.3 will now be applied to the PSE

equations. Our goal is to develop a usable stochastic form of the PSE equations in which only a reasonably

small set of modes is resolved explicitly, and the effects of the remaining modes is modeled through random

forces and random coefficients. This model will provide a natural interface between transition modeling and

turbulence modeling if the unresolved motion cau be characterized statistically by a turbulence model.

The breakdown of PSE calculations shortly after the rise in the skin friction coefficient has been discussed

in Sect. 3.2.1. To continue the PSE past this t)oint, and perhaps even into the fully turbulent region, we

will assume that the PSE model would be adequate if the basis of modes could be expanded indefinitely;

but rather thaa_ explicitly resolving the new modes generated during the phase of rapid spectral broadening

by PSE, we will treat them as unresolved components of the motion to be modeled following Eq. (3.23).

Sine(. _ these nlodes are both faster in time scale and smaller in amt)litude than the resolved modes, this type
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of modeling is reasonable. Our contention will be that a randomized PSE model will provide two required

parts of an integrated turbulence and transition model, namely a transition-like model which applies into

the breakdown region, and which interfaces naturally with a RANS model which will be applied in the fully

turbulent region.

Following the notation of Sect. 3.3, we decompose the disturbance into resolved and unresoh,ed modes

as

,71= E Am,"(x'÷ Y)ei("_:-n_'t) + E A-m,,_,,,(x y_e i(''_'_:-''_)
Imt<_MJnI<_N I,,I>M.I-t_<N

(3.33) + Z A/,,, ,,(x,y)ei(mJ=-""_¢) +.' Z A_,_,.(x,y)ci(''":. .... ')

trnl <_M,lnl> N [ml> M,inl> N

where the + modes will be resolved explicitly and the - modes will be modeled. After applying the wave-

mnplitude decomposition Eq. (3.5), the resolved modes are found to satisfy the equations

q,+ 0 e +
O'I'+'" +a,,,,,, 0 '"" -V,,,,,, ,I.,,,.,, + f,,.,, (tI,+, VIt,+) + F,,,,, ( q,-, Vg,-)

+

(3.36)D...... ....., + A.,,,, Oar Oy Oy=

where the contributions from the unreso]ved modes apt)ear in the term F,,,,, which is defined by

(3.37) F,..,,(_-, vq,-) = r,,,,,,(q, , vq, +) + r.,.,, (_,+, vq,-) + f,.,,, (q.-, v_-)

and the terms on the right side of Eq. (3.37) are defined by

(3.38) f'." (q*- ' Vq'+) = Z
t+ i* = rrl ,j÷j_ = n

(3.39) fro," (@+' V_t'-) = Z
i÷i'=m ,j+j'--n

(3.40) f,,,,,,('_-, V'_-) = Z
iti' =m,j+j' =n

where

B[qJ_,j, V@+,j ]--/-/Xi,ji' j'..,,,,

,, ]a,,,,, ,, ......,

B[,I,; o , V,I'-,, j,]A_,j,_,, o, ,,,,,,

](3.41) Ai,j,i,,j,,m,n = exp i ozi,j(x' ) -}- o_ i, j,(x') - ozm,n(xt)d*'

0

For brevity of notation, restrictions on the summation ranges in Eq. (3.40) which arise from the definitions

in Eq. (3.35) have been omitted in Eqs. (3.38) (3.40).

The modified PSE Eq. (3.37) can be rewritten as

+ ,,,
OR'm, .,,

Z o;,,,,,,.,,,,,.I..+,,,,+ x,,..m,,,, 0----2--+ <","."."' 0--7-
77_ _,7_ n

02@+
7I_, rt

(3.42) = Vm ,,- + f,,.,, ('t *+, V@ +) + q. ....
' Oy='

where the new convective coetlieients include the effects of unresolved modes:

(3.43)

(3.44) _ A:,,,,,,,,, ,,, 0x

÷

(3.45) _ B;., .......,,,,, Oy

' q_+ = D,, ,,,@+.,,, + f, .... (_I'+,V_I '-)a_,_l,tnt ,rl _ tll t ,rt t

+ 0_+... O_ +
O@m' "" - A_'" Ox +f'n'"(@-'--_--z )

- B,.... O'I'"+'" 0'I'+
. O--TZ + f.,,,, (q'-, -_y )
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and tile forcing term

(3.46) q,,,.,, = f,,.n(_-, _7_ -)

contains contrilmtions from unresolved modes alone.

Eqs. (3.42) (3.46) simply restate the PSE equations with a larger set of modes. The goal now is to

model the effect of the added fields @- without explicitly resolving them, as in large eddy simulations of

turbulence. One approach would be to develop approximate equations of evolution for the unresolved scales

in terms of the resolw_d scales. Instead, it is also possible to treat the random couplings in Eqs. (3.43) (3.45)

and the term q, .... in Eq. (3.46) as Gaussian random processes with statistics deternfined by the resolved

fields as discussed in Sect. 3.2. When this is done, the original PSE is replaced by a Langevin-like model

which includes a random force. Unlike a strict Langevin model, in which a random force is added to a

deterministic equation, the model proposed here will have both a random force and random coefficients.

Applications of Langevin models to turbulence theory have been proposed by [31].

The random force q ...... has the correlation function

(3.47) (q"_'" q ...... -") = Z (B[*_,,/ V@_,,t,]}
i+i'=m, j+j'=n, k+k'=-rn, l+l_=-n

Note, first, that Eq. (3.47) defines a space-time correlation and, second, the process q is not white noise in

time.

We will outline one particular model, suggested by Sect. 3.2, to (:lose the PSE equations for resolved

modes. To begin, replace the complete PSE equation for the unresolved modes, following Eq. (3.23) by

0'IG,., , 0_I' ;,,,,,,
(3.48) D ...... @_),.,,+A,,,,,, 0a_-+B,,,,,, 0y - Z B[@+J'V@+,J']"

i+ i' =;,)t,j + j' ='/_

In making this approxinmtion, we argue that the disturbances represented by the mode amplitudes _- are

small compared to the resolved disturbances @. Then it is reasonable to ignore the nonlinearity of the @-

evolution equations and treat the @- modes as driven by the resolved modes.

The matrices A-.. D in Eq. (3.48) contain the complex growth rates c_,,,,, which are found in PSE as

part of the modal evolution. Since the @- modes are not to be explMtly resolved, one might replace these

quantities 1)7, the linear growth rates obtained by linearizing the governing equations about the resolved

disturbance

(3.49) fi0 = E A ...... (x, y)e i('_3=-n"t).
I,,,I<M,M<X

With this prescription for the complex growth rates, Eq. (3.48) is determinate, and the force correlation Eq.

(3.47) can be evaluated in terms of the resolved disturbance alone.

By specializing to the (m, n) = (0, 0) mode, we can form the equation for the mean flow modification. In

this equation, the amplitude of the random perturbation @o,0 can be expected to grow in comparison to the

resolved stresses q0,0. As noted earlier, the sum @_() + q0.0 defines the Reynolds stress gradients. Although

the PSE Langevin model is a completely consistent turbulence theory, in the interests of economical calcu-

lations, it can be replaced by a turbulence model once the random contribution dominates the contribution

from the resolved modes. Relevant switchover strategies of this type have been proposed in a somewhat

different context by Spalart [42] for detached eddy simulation and by Speziale [43] for combining DNS with

RANS.
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It is also of some interest to note that the PSE equations include a kind of two-equation model. To deriw'

this model, we replace the modal amplitude vector • by a vector _ in which the amplitude components
~ ,

pertain only to tile velocities. Indeed, multiplying Eq. (3.8) by @ ....... gives a disturbance energy equation,

~, _ ~ . 0_,,_ n _. -- ORm ,, 24

(3.50) _9,,,,,,D ..... ,_.,, + ¢,,,,,,A,,,,,, _x + .... ,B,,,.,, _ x,,,.,_-m,, ay.2 + _,*,,_,f,,,.,_.

Since • is a vector and the quantities A..- D are matrices, the products in Eq. (3.50) are all scalars. The
~ ,

effective dissipation rate in this equation is tile last term, _,,,,,f,,,,,, its equation, also found from Eq. (3.8)

is

ill,l, Tt, ,TI

(3.51) -* -- -- f,, ,,Vm ,,-- + fm ,,f,;, ,.f,.... D ...... @m,,, + f, ..... A,,,,, Ox + f' ......B,,, .... Oy " " Oy 2 ' "

Note that. the above dissipation rate represents only the nonlinear energy transfer fi'om large to small scales.

It ignores viscous dissipation; in that sense, it may differ from the total dissipation rate used in conventional

two-equation models.

\_k_ conclude by' briefly discussing how the PDF equation for PSE modal amplitudes can be modified to

account for the random fi)rce introduced above as a model for the unresolved modes. A complete PDF model

for the stochastic PSE cannot be fornmlated exactly, because of the lint)licit procedure used to determine the

growth rates c_. The evolution of these quantities is highly path dependent, and it is iml)ossible to construct

a stochastic model of the evolution of all possible transition paths. Also, the apl)earance of stochastic

coefficients will require extensions to the standard methods. Thus, the present discussion will lye limited to

a very special case, namely we will assume that the a can be determined once and for all for all paths, an(1

only" the effect of the random force term q will be considered.

Using the conditionally Gaussian closure, the modified equations will have the form

0/I  0<o>. a-loq'+A- B k N

• -

+A-_V + _C(@, _')- C(_', @)[q_- <@]>]

+A-' (f(_I', _yC(_' _I')-C(@,qJ)[_I'- (@)],

c(-,-)[. - <->l-)]

+a-' Lo aq, aq,a¢x \ 7x/

(3.52) -40@O@y \ --_y / + 0_,_0_ Ox Oy

Again the crucial effect of the random force appears in the last two lines of Eq. (3.52) which are

diffusive terms indicative of the weakening of modal correlations. These diffusive terms again have the

effect of preventing the indefinite buildup of modal phase correlations, a critical feature of any theory' which

proposes to integrate the dynamics of transition and of turbulence. We stress, however, that numerical

solution of Eq. (3.52) is probably impractical.

Could a model like Eq. (3.52) be used in practice? The large number of degrees of freedom could perhaps

be handled by the particle method, by finding a simpler system than the stochastic PSE equations for which
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thePDFof themodalamplitudesis alsogovernedbyEq. (3.52).Thisrecommendationof Pope[31]has
beensuccesfullyappliedto problemslikereactingflows,whichin a Lagrangianframereduceto ordinary
differentialequations.In thepresentt)roblem,the'paths'areevolvingfieldsdescribedbypartialdifferential
equations.Extensionof theparticlemethodto thisclassof problemswill requirefurthergeneralizationof
the basicparticlemethodformulation.Themorefundamentalproblemfor stochasticformulationof the
PSEisthateachtransitionpathwill correspondto adistinctevolutionoftimcomplexwavenumbers_,,,.,,.
Thus,evenmoreapproximationswill beneededto formulatethePSEinafully stochasticsetting.

4. Summary and future work. Integrated modeling of transition and turbulence hms emerge(t as a

crucial need in many practical aerodynamic applications. To retain the physical basis necessary to explain

the relevant parametric dependencies and, hence, achieve the desired prediction accuracy, such integrated

computations nmst be done seamlessly over the entire transition process, from the initial disturl)ances to fully

developed turbulenee. Thus, two levels of integration are inherent to an approach of this type, a coupled

prediction of the laminar-through-transitional and turbulent regions of the flowfield (at the top) and an

integrated prediction of the various stages of transition (on the tier underneath). In addition, it is desirable

to pose the transition prediction problem in a stochastic context, in order to both facilitate an easy interface

with the statistical models for turbulence and to quanti_" tim effect of randomness and/or uncertainties

associated with the input quantities that are required for transition prediction. The present work may be

regarded as an embryonic attempt to explore the above needs, with an emphasis on the stochastic aspects of

nonlinear disturbance evolution in a laminar boundary layer and its potential continuation into the regions

of laminar breakdown as well as the fully turbulent flow downstream.

The flmdamental proI)erties of resonant wave interactions in boundary layer flows are that subharmonics

can grow rapidly tilrough parametric excitation, and that parametric growth is typically followed by an

explosive nonlinear growth of all modal amplitudes. The explosive growth phase can be delayed if the initial

phases are suitably related. Our calculations confirm these findings by previous researchers an(l quantiL"

the dependence of disturl)ance amplitudes on the initial conditions by evaluating the evolution of their joint

probability density function for a given description of the initial disturbances not in deterministic terms, but

in terms of corresponding statistical measures.

A basi(" objection to both linear stability theory and resonant interaction theory is that the predicted

indefinite amplification of disturbances is not observed, even though the mean flow could in principle provide

an energy source for such growth. 'Nonlinearity,' without flirther qualification, is sometimes cite(] as the

reason for the saturation of the disturbance amplitude; nut even the spreading of the disturbance over every

more modes is not an explanation. Instead, the prevention of the development of strong phase correlations

by coupling to a larger set of modes appears to have a significant role as well. Therefore, in developing an

integrated theory of transition and turbulence, it will be important to recognize the proper role of phase

correlations in determining the onset of transition.

The probabilistic analysis has been extended to the PSE equations, which are to date the most compre-

hensive, albeit non-rigorous, model for engineering prediction of laminar-turbulent transition. The crossover

from the PSE equations to a turbulence model has been described through a PSE Langevin model, in which

the PSE equations are modified by random forces and random dephasing terms. When the random per°

turbations grow sufficiently, the PSE Langevin model can be replaced by a RANS model in the interest of

economy of computation.

Our conclusion is that a stochastic formulation of the PSE transition model can link transition modeling

and turbulence modeling in the required seamless fashion. Stochastic closures for unresolved motions are the
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mostimportantrequirement.Therecommendationsin Sect.3.3werebaseddirectlyontransitiontheory,
butaninterestingalternative(whichmaybeeasilyimplementedinpractice)wouldbeto applytheideasof
largeeddysimulationto formulateanalogsoftheSmagorinskyanddynamicSnlagorinskymodelappropriate
to transitionalflowswithin thePSEframework.Thisapproachhasthepotentialto makethecrossoverto
turbulencemodelsmuchmorestraightforward.

Theprimarymotivationbehindconsideringreduced-ordermodelsforPSEwasto facilitateengineering
predictionsthroughtile transitionregion.However,anotherhenefitwouldbeto providedetailedphysical
insightsinto thetransitionprocessviaa coupled PSE-LES/DNS approach. Essentially by extending the

PSE predictions further into the laminar breakdown region, the computational domain for LES/DNS could

significantly shortened (see, for example, [19], [32]). Indeed, if PSE calculations can be successfnlly continued

even into the turbulent region, there is the interesting possibility of being able to predict sublayer dynamics

including wall streaks and bursting frequencies. Application of PSE in this respect offers an attractive

alternative to other modal analyses of fully turbulent flows which have been pursued over many years ([54],

[47]). Of course, to make this application feasible, extensive comparisons against numerical and, where

available, experimental databases will have to be carried out. We also plan to conduct an a priori analysis of

the simulation data, both in order to evaluate tile accuracy of candidate models for residual stress components

and to ascertain the validity of PSE methodology past tile onset of transition.

So far, we have focused our attention on stochastic, integrated prediction of tile transition process. The

next phase of this work will involve linking transition prediction and conventional CFD codes. In brief, the

overall computation involves an iterative procedure consisting of a RANS computation over the entire flow

field coupled with an 'nnsteady' computation (PSE and residual stress) ow_r the laminar and transitional

region. The mean flow (obtained directely from RANS or via a boundary layer solver) is fed from the RANS

model to the transitional module, which predicts tile extent of the laminar and transitional regions, plus the

mean Reynolds stress distribution. This information, in turn, is injected into the RANS sinmlation. This

procedure is analogous to 'zonal' modeling for fully turbulent flow fields, except that the zonal boundaries

are not predetermined in our case (also, tile unsteady calcualtion may take place over a different grid using

spatial marching approach instead of a pseudo-time marching typical of RANS calculations). A robust im-

plementation of this procedure will require special attention to numerical convergence of the global iteration

procedure. Other related numerical issues have recently been investigated in [44].
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6. Appendix I: Finite volume integration of PDF evolution equation. In this AI)I)endix, we

present a brief descril)tion of the numerical method used to solve the PDF evolution equation Eq. (2.12) for

a resonant triad.

We apply finite volmne discretization, dividing the space of the indet)endent variables r, ra, 0 into rect-

angular cells with side lengths Ar, 2Xr3, A0, where

(6.1) N(x I xo,a) = _1 e-(_-_°)_/2_"

and assuming that P is constant in each cell. Let cell (i, j, k) be bounded by the planes r = (i + 1)At, r =

i/Xr, r3 = (j + 1)Ar3, r3 = jar3,0 ---- (k + 1)A0, 0 = kA0 Let P_,j._. denote the value of P in this cell, and let

77_ij.k denote the value of P on the face on which r = jar, with analogous definitions for the values 7r:_ and

7r°. Integrating Eq. (2.12) over each cell produces the discrete equation

At 0

Pi,j,k(t + At) = Pi,j,_.(t) + Ai_,j-------_k{ffT,j,_, + :'_j,k + J:[j,k}
(6.2)

where

(6.3)

_'[:j.k = /dr _---_(FrP)

= Fr((i + 1)At, jAr3, kAO)_r_+_ j,k - F_(iAr, jAr3, kAO)Tc::j, k

_i,j,k = dr3 (F3P)

= F3(iAr, (j + 1)Ar3, kAO)Tc_j+l,k - F3(iAr, jAr3, kAO)rc3j,t.

z,. =f dO O(FoP)
= Fo(iAr, jAr3, (k + 1)AO)Tc°j,_.+l -- Fo(iAr, jAr3, kAO)Tr°,j,k.

The assumption that P is constant in each cell implies that the fluxes .T can be evaluated exactly, but

the problem remains to evaluate the values on the faces 7r by interpolating the values of P in each cell. The
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most obvious procedure of averaging tile values of P across each face:

1 [P,,j,k+ P_-l,_,_,]

1 [Pi,j,k + Pi j-l,t,]<j,k = _

(6.4) 7cOi,j,k l[Pij.k + Pijl,.-l]

is well-known to be unstable [17]. A stable scheme results from tile "upwind" Inethod

f P(i,j,k) ifFr(i,j,k) > O
(6.5)

P(i- l,j,k) if F,.(i,j,k) <0

(6.9)

with the second modification Eq.

unchanged.

with analogous definitions for _ra and rr°, in which tile value of rr is the value of P at the cell into which the

corresponding flux J- points.

The accuracy of the computation degrades quickly if there is a probability flux across the I)oundaries

of the region of integration. Since the amplitude distributions spread out, the region of integration nmst

increase to prevent any loss of total probability. To maintain the total probability, tile box sizes are rescaled

at. each time-step so that a fixed number of boxes always contain all trot a small specified amount of the

total probability. The rescaling is done on the basis of the standard deviations of the nmrginal distributions

P(r) and P(ra). Strictly speaking, rescaling based on the standard deviation is accurate only for Gaussian

distributions, for which the region from about -4.5c, to +4.5c_ contains almost all of the probability; however,

the calculations showed that this simple procedure was satisfactory in practice.

To implement this variable box-size, tile governing equation is modified as folh)ws: define the res<:ale<t

variables

r _ O'rar -{- _t

(6.6) ra = _axa + ma.

Note that since the problem is periodic in 0, rescaling of 0 is not possible. Instead of Eq. (2.12) we solve the

modified equation

(6.7) 0/5 1 0 ( ) 1 0 ( ) O(Fo/5) =00_-+ -,_ [(F_- _- - #_)P] + ----_:_&._ [(F:t- <,*:, - ,h:_)P] +

where the fluxes Fr, Fa, Fo are the same as the fluxes in Eq. (2.6) and

(n = / F,,/sdl"

riga = / Fa/sdl _

d = / xF,./sdl"

/(6.8) ha = xaFa/sdI'.

For parametric excitation, the governing equation Eq. (2.12) is modified by altering the flux terms to

Fr = rr3 cosO + Or

F 3 = or3

Fo = -2r3 sin 0

(6.8) for rescaling, but otherwise, the mmmrical integration method is
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7. Appendix II: Results for inhomogeneous Gaussian random fields. In this Appendix, we

derive s()me results used to formulate the conditionally Gaussian closure for PDF evolution equations.

For an inhomogeneous Gaussian random vector field V"i(x), introduce the statistics

(7.1)

,i(x) = <'¢:,i(x)>

C,j (y, x) = <t,,_(y)><v',j(:r)>- (_',_(y)_,j (x)>

= -<[V'j(_)- (_,j(y)>]['_,_(x)- (_,,(_.))]).

Note that the covariance matrix C is nonsingular.

Conditional ext)ectations are found from the linear regression equation which is exact for Gaussian

random fields

(7.2)

(7.3)

(_:',(.u)I _:'_(_)"' V,,(x)> = a;(y) + c;,,,(y, x)C,,,_(_:,x) -] [_!,_(_)- ,_(_:)]

Consequently conditional expectations of derivatives are given by

<O_/'_(x) • g,n(x)> +OC, ....• I _',(_) "" = "',(_) _(Y,_) I_=_ C,,_(_,_)-'[_',j(_) - aj(x)]

<o%,,, ) o:c.,, (;, x)

where we can substitute

(7.4) _c_j(y,_) I_=,= <a'j(_)><_j(x)> - tl,j(x) +

so that multiplication by the viscous term V leads to a dissipative correlation.

>
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